1. Second-order system damping The smaller the ζ, the smaller the rising time tr; the larger the ζ, the greater the tr. The larger the natural frequency ωn, the smaller the tr, and vice versa, the greater the tr. The natural frequency has a angular velocity framework, and the damping ratio is an unmeasured parameter.
2. The damping ratio determines the oscillation performance (stability) of the second-order system. Increasing the damping ratio can weaken the oscillation performance of the system (enhancing the stability of the system), that is, reduce the over-modulation, reduce the number of shocks, but increase the rise time and peak time. For the molecular constant of the second-order system, it determines the size of the output value when the system is stable.
3. Mutual relationship. It can be seen from the dynamic performance index that the smaller the damping ratio, the smaller the rise time, the smaller the peak time, the greater the overmodulation, the greater the adjustment time, the greater the damping ratio, the greater the rise time, the greater the peak time, the smaller the overmodulation, the smaller the adjustment time, and the relationship between the peak time and the damping ratio is mutual.
4. Stability: The damping ratio also affects the stability of the system. For a second-order system, when the damping ratio is less than 1, the system is stable; when the damping ratio is greater than 1, the system is stable; but when the damping ratio is equal to 1, the system is in a critical stable state, and stability problems caused by the boundary situation may occur.
5. The maximum overmodulation in the dynamic performance index of the second-order system is only related to the damping ratio. It can be seen that the damping ratioThe frequency of the damping natural oscillation angle of the system is the main dynamic time domain characteristic parameter of the second-order measurement system.
Reproducibility: refers to the fact that when a parameter is repeatedly measured with the same instrument under the condition that the measurement conditions remain unchanged, the difference between each measured value and the average value relative to the large scale range Percentage. This is an important indicator of the stability of instruments and meters. Generally, it needs to be checked during commissioning and daily verification.
At this time, the performance indicators of the transient response are: maximum overtuning σp - the maximum value of the response curve deviation from the steady-state value, which is often expressed as a percentage, that is, the maximum percentage over-tuning and the maximum over-tuning indicate the relative stability of the system.
Security: Security refers to the security of the test system that can protect user data.For the test system, security is a very important performance indicator, which is related to whether the test system can protect user data from leakage or attack.
Super modulation is the response process curve of the linear control system under the step signal input, that is, an index value of the step response curve to analyze the dynamic performance. Over-tuning is also called maximum deviation (maximum deviation) or over-dump. Deviation refers to the difference between the adjusted parameter and the given value.
the time it reaches the stable value for the first time. According to the query Baidu Education, the rising time of the second-order under-damping system is the time when the leap response curve of the system reaches a stable value for the first time.In automatic control, the second-order system with under-damping refers to the second-order system with a damping ratio greater than 0 and less than 1.
The smaller the damping ratio of the second-order system, the smaller the rise time tr; the larger the ζ, the greater the tr. The larger the natural frequency ωn, the smaller the tr, and vice versa, the greater the tr. The natural frequency has a angular velocity framework, and the damping ratio is an unmeasured parameter.
T1. The adjustment time of the second-order damping system is 3T1. When the unit step response of the second-order system lacking damping, the characteristic root of the characteristic equation of the closed-loop system is a pair of conjugated complex roots. Among the output, the damping oscillation angle frequency and the damping angle.
1. Therefore, the change in the damping ratio will affect the oscillation frequency, amplitude and duration of the system.Stability: The damping ratio also affects the stability of the system.
2. The smaller the damping ratio of the second-order system, the smaller the rise time tr; the larger the ζ, the greater the tr. The larger the natural frequency ωn, the smaller the tr, and vice versa, the greater the tr. The natural frequency has a angular velocity framework, and the damping ratio is an unmeasured parameter.
3. When the damping ratio is less than 1, the unit step response curve of the system will oscillate.
4. The damping ratio determines the oscillation performance (stability) of the second-order system. Increasing the damping ratio can weaken the oscillation performance of the system (enhancing the stability of the system), that is, reduce the overmodulation, reduce the number of shocks, but increase the rise time and peak time. For the molecular constant of the second-order system, it determines the size of the output value when the system is stable.
5. ζ is the damping ratio.In general, with the continuous increase of ζ, the transient response graphic vibration amplitude of its system decreases and gradually tends to stabilize. When ζ=0, the system is in a non-damping state, and the transient response of the system is a periodic function of constant amplitude.
Global trade risk heatmaps-APP, download it now, new users will receive a novice gift pack.
1. Second-order system damping The smaller the ζ, the smaller the rising time tr; the larger the ζ, the greater the tr. The larger the natural frequency ωn, the smaller the tr, and vice versa, the greater the tr. The natural frequency has a angular velocity framework, and the damping ratio is an unmeasured parameter.
2. The damping ratio determines the oscillation performance (stability) of the second-order system. Increasing the damping ratio can weaken the oscillation performance of the system (enhancing the stability of the system), that is, reduce the over-modulation, reduce the number of shocks, but increase the rise time and peak time. For the molecular constant of the second-order system, it determines the size of the output value when the system is stable.
3. Mutual relationship. It can be seen from the dynamic performance index that the smaller the damping ratio, the smaller the rise time, the smaller the peak time, the greater the overmodulation, the greater the adjustment time, the greater the damping ratio, the greater the rise time, the greater the peak time, the smaller the overmodulation, the smaller the adjustment time, and the relationship between the peak time and the damping ratio is mutual.
4. Stability: The damping ratio also affects the stability of the system. For a second-order system, when the damping ratio is less than 1, the system is stable; when the damping ratio is greater than 1, the system is stable; but when the damping ratio is equal to 1, the system is in a critical stable state, and stability problems caused by the boundary situation may occur.
5. The maximum overmodulation in the dynamic performance index of the second-order system is only related to the damping ratio. It can be seen that the damping ratioThe frequency of the damping natural oscillation angle of the system is the main dynamic time domain characteristic parameter of the second-order measurement system.
Reproducibility: refers to the fact that when a parameter is repeatedly measured with the same instrument under the condition that the measurement conditions remain unchanged, the difference between each measured value and the average value relative to the large scale range Percentage. This is an important indicator of the stability of instruments and meters. Generally, it needs to be checked during commissioning and daily verification.
At this time, the performance indicators of the transient response are: maximum overtuning σp - the maximum value of the response curve deviation from the steady-state value, which is often expressed as a percentage, that is, the maximum percentage over-tuning and the maximum over-tuning indicate the relative stability of the system.
Security: Security refers to the security of the test system that can protect user data.For the test system, security is a very important performance indicator, which is related to whether the test system can protect user data from leakage or attack.
Super modulation is the response process curve of the linear control system under the step signal input, that is, an index value of the step response curve to analyze the dynamic performance. Over-tuning is also called maximum deviation (maximum deviation) or over-dump. Deviation refers to the difference between the adjusted parameter and the given value.
the time it reaches the stable value for the first time. According to the query Baidu Education, the rising time of the second-order under-damping system is the time when the leap response curve of the system reaches a stable value for the first time.In automatic control, the second-order system with under-damping refers to the second-order system with a damping ratio greater than 0 and less than 1.
The smaller the damping ratio of the second-order system, the smaller the rise time tr; the larger the ζ, the greater the tr. The larger the natural frequency ωn, the smaller the tr, and vice versa, the greater the tr. The natural frequency has a angular velocity framework, and the damping ratio is an unmeasured parameter.
T1. The adjustment time of the second-order damping system is 3T1. When the unit step response of the second-order system lacking damping, the characteristic root of the characteristic equation of the closed-loop system is a pair of conjugated complex roots. Among the output, the damping oscillation angle frequency and the damping angle.
1. Therefore, the change in the damping ratio will affect the oscillation frequency, amplitude and duration of the system.Stability: The damping ratio also affects the stability of the system.
2. The smaller the damping ratio of the second-order system, the smaller the rise time tr; the larger the ζ, the greater the tr. The larger the natural frequency ωn, the smaller the tr, and vice versa, the greater the tr. The natural frequency has a angular velocity framework, and the damping ratio is an unmeasured parameter.
3. When the damping ratio is less than 1, the unit step response curve of the system will oscillate.
4. The damping ratio determines the oscillation performance (stability) of the second-order system. Increasing the damping ratio can weaken the oscillation performance of the system (enhancing the stability of the system), that is, reduce the overmodulation, reduce the number of shocks, but increase the rise time and peak time. For the molecular constant of the second-order system, it determines the size of the output value when the system is stable.
5. ζ is the damping ratio.In general, with the continuous increase of ζ, the transient response graphic vibration amplitude of its system decreases and gradually tends to stabilize. When ζ=0, the system is in a non-damping state, and the transient response of the system is a periodic function of constant amplitude.
Optimizing tariff schedules by HS code
author: 2024-12-24 00:57HS code-based anti-dumping analysis
author: 2024-12-23 23:58HS code lookup for global trade
author: 2024-12-23 23:40How to refine supply chain visibility
author: 2024-12-23 23:30Container freight index monitoring
author: 2024-12-23 23:18Global logistics analytics platforms
author: 2024-12-24 01:23HS code-based KPI reporting for trade teams
author: 2024-12-24 01:12How to reduce import export costs
author: 2024-12-24 00:55HS code lookup for Asia-Pacific markets
author: 2024-12-24 00:14HS code-based reclassification services
author: 2024-12-24 00:09311.95MB
Check215.84MB
Check879.73MB
Check894.52MB
Check128.48MB
Check784.63MB
Check213.27MB
Check434.48MB
Check515.26MB
Check572.45MB
Check193.71MB
Check592.59MB
Check626.65MB
Check264.47MB
Check146.21MB
Check469.56MB
Check899.39MB
Check847.35MB
Check465.99MB
Check784.47MB
Check812.41MB
Check788.97MB
Check642.57MB
Check796.78MB
Check932.47MB
Check816.28MB
Check716.73MB
Check598.24MB
Check171.51MB
Check516.34MB
Check723.16MB
Check988.11MB
Check685.98MB
Check983.46MB
Check317.84MB
Check793.13MB
CheckScan to install
Global trade risk heatmaps to discover more
Netizen comments More
358 How to use HS codes for tariff predictions
2024-12-24 01:30 recommend
3000 Fish and seafood HS code mapping
2024-12-24 01:14 recommend
136 Organic cotton HS code verification
2024-12-24 00:54 recommend
2997 Optimizing tariff schedules by HS code
2024-12-24 00:01 recommend
203 How to streamline customs clearance
2024-12-23 23:15 recommend