Channel 0 corresponds to PA0, Channel 1 corresponds to PA1, Channel 2 corresponds to PA2, Channel 3 corresponds to PA3, and so on. The default options include PA0's foot and ADC123_IN0, which means that when PA0 collects pins from ADC, the channel0 of ADC1, 2 and 3 modules can be used.
STM32F103C8T6 is a single-chip microcomputer chip designed by STMicroelectronics. It adopts the Cortex-M3 kernel, the main frequency is 72MHz, and the memory includes 64KB flash memory, 20KBSRAM and 2KBEEPROM.
WeThe commonly used model is STM32F103C8T6, and the following is based on STM32F103C8T6. Secondly, the STM32F103 series chip defines only two pins for USB function, which are USBDM and USBDP. In the form of 48-pin packaging, USBDM is in pin 32, corresponding to PA11; USBDP is in pin 33, corresponding to PA12.
STM32F103C8T6 is a 32-bit single-chip microcomputer based on the ARM Cortex-M kernel, which can make some simple products, such as bracelets, watches, temperature and humidity detectors, etc. Serial interface, also known as serial communication interface or serial communication interface (usually refers to COM interface), is an extended interface that adopts serial communication.
The linear parasitic capacitor is generally 3~5pF. According to the relevant information of the query, it can be found from the ST manual that the crystal input capacitance of STM32F103 is 5pF, while the parasitic capacitance of PCB wiring can be estimated at 3pF to 5pF.
The crystal vibration capacitor is located on the two feet of the crystal vibration. In the STM32F103RCT6 chip, the external crystal oscillator needs to be connected to the pin of the crystal with two capacitors. These capacitors are called load capacitors, which help stabilize and adjust the frequency of crystals.
A resistor of about 10M is connected in parallel between the two pins of the crystal vibration.
If the capacitor is 10uF, the resistance is about 20K. The power-on reset is generally the RC charging and discharging circuit.
The capacitor in the crystal oscillation circuit of a single-chip microcomputer is called the load capacitance, which can also be said to be the starting capacitor. Generally, there are two small capacitors in the crystal oscillation circuit. The crystal vibration work of the single-chip microcomputer is in a parallel resonance state, which can also be understood as part of the resonance capacitor.
1. The difference between the two is particularly big. I suggest using a small difference.
2. The former is a 32-bit single-chip microcomputer, and the latter is an 8-bit single-chip microcomputer. It is not the same grade, the internal resources are very different, and the comparability is not strong. For example, RAM, the former is 64KB, and the latter is only 4KB. FLASHROM, the former is 512KB, and the latter is only 48KB. The difference is more than 10 times.
3. The chip of the single-chip microcomputer is different. The peripheral circuits are different. The others are the same.
1. The range of the input level of the STM32 pin is ALVC, the input is less than 0, the input is greater than 2V is counted as a high level, and 8V in LV and ALVT is counted as a low level.
2. We can see the metal pins arranged around the single-chip microcomputer. These pins are called pins. The following figure shows the specific functions of different pins of the ATMEGA328P-AU single-chip microcomputer. The pins can be roughly divided into 4 categories: the positive pole of the power supply (VCC) marked in red and the negative pole of the power supply marked in black. Pole (GND), these pins are used to power single-chip microcomputers.
3. The pin functions of stm32 are as follows: GPIO pin, ADC input pin. GPIO pin: The GPIO pin in STM32 is mainly used for input and output digital signals, and the pin status can be controlled by programming. ADC input pin: used to connect analog input signals, such as temperature, light intenss, etc., and convert them into digital signals.
Comparative trade performance metrics-APP, download it now, new users will receive a novice gift pack.
Channel 0 corresponds to PA0, Channel 1 corresponds to PA1, Channel 2 corresponds to PA2, Channel 3 corresponds to PA3, and so on. The default options include PA0's foot and ADC123_IN0, which means that when PA0 collects pins from ADC, the channel0 of ADC1, 2 and 3 modules can be used.
STM32F103C8T6 is a single-chip microcomputer chip designed by STMicroelectronics. It adopts the Cortex-M3 kernel, the main frequency is 72MHz, and the memory includes 64KB flash memory, 20KBSRAM and 2KBEEPROM.
WeThe commonly used model is STM32F103C8T6, and the following is based on STM32F103C8T6. Secondly, the STM32F103 series chip defines only two pins for USB function, which are USBDM and USBDP. In the form of 48-pin packaging, USBDM is in pin 32, corresponding to PA11; USBDP is in pin 33, corresponding to PA12.
STM32F103C8T6 is a 32-bit single-chip microcomputer based on the ARM Cortex-M kernel, which can make some simple products, such as bracelets, watches, temperature and humidity detectors, etc. Serial interface, also known as serial communication interface or serial communication interface (usually refers to COM interface), is an extended interface that adopts serial communication.
The linear parasitic capacitor is generally 3~5pF. According to the relevant information of the query, it can be found from the ST manual that the crystal input capacitance of STM32F103 is 5pF, while the parasitic capacitance of PCB wiring can be estimated at 3pF to 5pF.
The crystal vibration capacitor is located on the two feet of the crystal vibration. In the STM32F103RCT6 chip, the external crystal oscillator needs to be connected to the pin of the crystal with two capacitors. These capacitors are called load capacitors, which help stabilize and adjust the frequency of crystals.
A resistor of about 10M is connected in parallel between the two pins of the crystal vibration.
If the capacitor is 10uF, the resistance is about 20K. The power-on reset is generally the RC charging and discharging circuit.
The capacitor in the crystal oscillation circuit of a single-chip microcomputer is called the load capacitance, which can also be said to be the starting capacitor. Generally, there are two small capacitors in the crystal oscillation circuit. The crystal vibration work of the single-chip microcomputer is in a parallel resonance state, which can also be understood as part of the resonance capacitor.
1. The difference between the two is particularly big. I suggest using a small difference.
2. The former is a 32-bit single-chip microcomputer, and the latter is an 8-bit single-chip microcomputer. It is not the same grade, the internal resources are very different, and the comparability is not strong. For example, RAM, the former is 64KB, and the latter is only 4KB. FLASHROM, the former is 512KB, and the latter is only 48KB. The difference is more than 10 times.
3. The chip of the single-chip microcomputer is different. The peripheral circuits are different. The others are the same.
1. The range of the input level of the STM32 pin is ALVC, the input is less than 0, the input is greater than 2V is counted as a high level, and 8V in LV and ALVT is counted as a low level.
2. We can see the metal pins arranged around the single-chip microcomputer. These pins are called pins. The following figure shows the specific functions of different pins of the ATMEGA328P-AU single-chip microcomputer. The pins can be roughly divided into 4 categories: the positive pole of the power supply (VCC) marked in red and the negative pole of the power supply marked in black. Pole (GND), these pins are used to power single-chip microcomputers.
3. The pin functions of stm32 are as follows: GPIO pin, ADC input pin. GPIO pin: The GPIO pin in STM32 is mainly used for input and output digital signals, and the pin status can be controlled by programming. ADC input pin: used to connect analog input signals, such as temperature, light intenss, etc., and convert them into digital signals.
How to mitigate currency fluctuation risk
author: 2024-12-23 22:35How to analyze global export trends
author: 2024-12-23 22:13Country tariff schedules by HS code
author: 2024-12-23 20:47Trade data for government agencies
author: 2024-12-23 20:21Trade data for healthcare supplies
author: 2024-12-23 19:55Pharma supply chain mapping by HS code
author: 2024-12-23 22:01Agriculture trade data by HS code
author: 2024-12-23 21:39Agriculture trade data intelligence
author: 2024-12-23 21:09Expert tips on customs data usage
author: 2024-12-23 20:26HS code-based tariff reconciliation
author: 2024-12-23 19:52422.29MB
Check292.15MB
Check638.59MB
Check538.89MB
Check519.75MB
Check925.97MB
Check336.87MB
Check396.74MB
Check974.16MB
Check176.26MB
Check878.67MB
Check416.33MB
Check237.66MB
Check625.11MB
Check888.53MB
Check989.75MB
Check756.71MB
Check355.91MB
Check296.11MB
Check631.25MB
Check564.93MB
Check682.58MB
Check312.54MB
Check769.25MB
Check677.76MB
Check132.94MB
Check157.94MB
Check447.29MB
Check235.14MB
Check274.61MB
Check292.74MB
Check465.37MB
Check847.52MB
Check994.53MB
Check814.55MB
Check786.79MB
CheckScan to install
Comparative trade performance metrics to discover more
Netizen comments More
746 Maritime insurance via HS code data
2024-12-23 22:10 recommend
842 Supplier risk profiling with trade data
2024-12-23 21:46 recommend
1674 Global trade content syndication
2024-12-23 21:35 recommend
339 How to interpret bonded warehouse data
2024-12-23 21:32 recommend
235 Supply chain data
2024-12-23 20:42 recommend